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OVERVIEW

Timeline:
 Project Start Date – 10/1/2018

 Task 1- Vehicle in the Loop 

(VIL)

 Task 2- Aero

 Project End Date- 9/30/2021

 Percent Complete- 50%

EEMS Barriers Addressed:

1) Rapid evolution of vehicle technologies and 

services enabled by connectivity and automation

2) Accurately measuring the transportation system-

wide energy impacts of connected and automated 

vehicles

3) Difficulty in sourcing empirical real-world data 

applicable to new mobility technologies such as 

connectivity and automation
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Collaborations / Partners:
 ANL / DOE Vehicle Modeling & Control PI’s

 Ecocar Mobility Challenge

 DOE Smart consortium researchers

 ANL Cybersecurity Research

 DOT NHTSA

Budget: 
 FY20 Project Funding:

 $500k: Vehicle in the Loop (VIL)

 $250k: Aero

 FY21 Project Funding:

 To Be Determined



RELEVANCE

Flexible Control

Simulated Environments

Connectivity

CAV Evaluation

Virtual Environment

Current Vehicle 

Evaluations

Connected and Automated Vehicle technologies offer 

a large, but variable impact to energy consumption. 

Quantifying the impacts requires unique tools in both 

Simulation & Experimentation
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Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Development of VIL Implementation Plan and 

Communication Pathways

Concept Implementation and Validation in Simulated 

Environment

On-track evaluation of research vehicles for validation 

of VIL environment on transient drive cycles

Direct Microsimulation (Aimsun) Integration 

Accessory Load Emulation Integration

Real-time Collaborative Dynamometer Testing

Integration of Six VIL Research Powertrains

Test Design / Vehicle Selection and Instrumentation

Preliminary Vehicle Evaluation

Multi-vehicle Evaluation and Analysis

System Refinement, Expanded Testing of Varying 

Speeds, Gaps and Vehicle Configurations

Development of Generic Empirical Gap Model 

V
IL

AMRAMR Submission

A
e
ro

MILESTONES
Completed

COVID-19 Validation Delay

FY 2019 FY 2020



APPROACH: VEHICLE IN THE LOOP (VIL) WITH DIRECT CONTROL 
OVERRIDE
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Control 

Override

Virtual Environment

V2X 

Communication

Connected Vehicle/s

& Infrastructure

Communication Environment

By providing a unique, vehicle system focused environment for intelligent/connected vehicle 

systems, Vehicle-in-the-Loop (VIL) offers the following benefits:

• Flexible- Variable powertrain (EV, Conv, …) / development - safe testing environment

• Precise and Repeatable- Controlled variation of specific test parameters 

• Safe- Vehicle testing is in a stationary, controlled environment 

• Reduced cost- Continuous testing (non human-driven) not requiring offsite travel

• Portable- Following validation, hardware and control may travel with vehicle (track testing?)

Dynamic 

Dyno Load

Real-Time Embedded Environment
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Control model
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ACCOMPLISHMENTS: VIL ON-TRACK EVALUATION

Goal : Validate VIL override operation and vehicle response 

characteristics on a safe, controlled test track

Accel OverrideStock ACC

Object Override

Test 1 - Actual Lead Following Virtual Vehicle

E L

Drive Cycle

vL

Test 2 – Virtual Lead Driving Recorded Actual Trace

E vL

Recorded Test 1 

Speed Profile

Result: Override is effective & repeatable for longitudinal 

VIL control- variability from external factors (weather, 

animals, & driver variability) demonstrates concept benefits

Acceleration Distribution [m/s2]

UDDS cycle
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Track testing methodology

• Operate test vehicle with actual & emulated 

lead to verify consistent operation

• Evaluate on certification and custom cycles

• Compare ECU commanded acceleration and 

following gap from vehicle communication



ACCOMPLISHMENTS: DYNAMIC ACCESSORY LOAD EMULATION
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• Load simulation interface: Implemented models for 

dynamic loading within dyno experimentation

• Communication interface: Established communication 

between real time controller and DC load bank-

dynamically requesting loading to the vehicle low 

voltage system

• Dynamic loading: Dynamic loading needed for VIL -

static loading demonstrated in EEMS045

Simulink Code
Python Code

RTI 

Ethernet 

Blockset

Ethernet 

port (TCP)

Serial Port

Goal : Integrate methodology for dynamic application of low-voltage loads such as those from driver 

assistance systems or power steering

Vehicle Accessory Loading During Dyno Testing

DC Load Bank

Real-Time 

Controller 

(MABx)

Reference: Rask - EEMS045: Automated Vehicle Electrical Load investigation



ACCOMPLISHMENTS: VIL AIMSUN INTEGRATION

Advantages :

• Reduced testing time and resources used (efficient)

• Simulations can be repeated in an accident free environment (safe)

• CAV technologies can be tested in advanced traffic simulations 

modeled with experimentally collected data (to create representative 

test scenarios - reliable)

• Stimuli data can be modified in real time to evaluate the effect on the 

ADAS functionalities

• Modularized components/models and common IOs can be used : the 

system is flexible and the workflow can be expanded to include new 

stages (or existing stages that need validation)

Challenges :

• Co-simulation (traffic, vehicle, powertrain) requires integration of 

different software tools on different operating systems

Goal : Connect a traffic simulation platform with vehicle on-board ECUs to experimentally assess the 

energy impacts of CAVs technologies on a traffic network level

Chassis Dynamometer

Traffic Simulation 

(Aimsun)

Ethernet

VIL

Real-Time 

Controller 

Why is it needed (Motivation) :

• Many ADAS functions interact with other traffic participants. These entities need to be included in the simulation to evaluate the 

energy / safety impact associated with the interactions.

• As the vehicles become more complex and include more communication systems, their performance should be evaluated on a 

larger geographical scale and larger number of connected vehicles s integration of different software tools on different operating 

systems.
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ACCOMPLISHMENTS: DRIVER MODEL VARIABILITY

* SOC Corrected

Acceleration

Control
Driver 

Model

References

• Model 2: Collision Avoidance Model
MathWorks, “Adaptive Cruise Control with Sensor Fusion”, 

available online : 

https://www.mathworks.com/help/driving/examples/adaptive-

cruise-control-with-sensor-fusion.html

• Model 3: Optimal Velocity Model
Islam, M., R., "Comparison of Vehicle Dynamics of Microscopic 

Car Following Models : Optimal Velocity and Intelligent Driver 

Model", 2014

Goal : Explore the energy use impacts of varying driver models
Driver Model 1

Driver Model 2

Driver Model 3

Driver Model Fuel Economy [mpg]*

Trace Following 49.0

Stock ACC 50.9 (+3.9%)

Collision Avoidance 51.8 (+5.7%)

Optimal Velocity 53.2 (+8.6%)

Result: Effective & repeatable method for energy use 

quantification of varying vehicle control 9

https://www.mathworks.com/help/driving/examples/adaptive-cruise-control-with-sensor-fusion.html


ACCOMPLISHMENTS:  
VEHICLE POSITIONING VARIABILITY
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Goal : Explore the energy use impacts of vehicle position in a string of ten

ACC vehicles with two different driver models.

• Consistent test vehicle & drive model

• Virtual lead vehicle operates on aggressive US06

• Test vehicle follows speed profile of test vehicle 

immediately prior

2017 Toyota Prius Prime

Result: Energy use impacts of a driver model affect not only 

the current vehicle, but also surrounding traffic.

Vehicle in HEV mode
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APPROACH: AERODYNAMIC LOAD CHANGES WITH AUTONOMOUS 
DRIVING

Autonomous Vehicle Driving Choices:

• Stay close: lower drag, higher traffic density

• Keep distance: smoother driving controls, efficiency

Limitations in Current Literature:

• CFD simulations

• Wind tunnels

• Actual road testing data is out-of-date and sparse

Project Vision: 

• Provide modelers empirical aerodynamic load 

changes with a set of equations:
 Inputs: Speed, Gaps, Vehicle profiles

 Output: Change in aerodynamic road load for 

each vehicle

gap gap

Road load force from axle torque

Phase One: Proof of concept

• Measured tractive force changes in two cars.

• Lessons learned used in phase 2

Phase Two: Multi-Car with Controls

• Measured tractive force changes as function of 

gap for three cars in platoon.

• Literature CACC gap controls adapted for 

controller

• Lead & rear vehicle controlled w/pedal signal

• Larger track gave better data

Phase Three: (future) Design of Experiments

• Multi-vehicle, multi-gap

• DoE testing with CFD support for generalized 

equations
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• Three-vehicle setup / vehicle control method validated

• Prior simulation tuning saved considerable track time tuning

• Much better data at larger track

• Optical LIDAR gap sensor still problematic (switching to radar)

• Monotonic road load reductions (robust results)

• Lead vehicle showed small but measureable reduction

• Middle vehicle (F-150) showed similar results as rear (Fusion)

ACCOMPLISHMENTS: COMPUTER-CONTROLLED THREE-VEHICLE ROAD 
LOAD MEASUREMENTS ON-TRACK

Longer, 7.5-mile track

CX-9F-150Fusion

Total Road Load Force Reduction Ratio

Pre-experiment 

Development

Step 1:

Identify appropriate 

CACC control 

equations

Step 2:

Modify equations to set 

both gap and speed

Step 3:

Tune parameters in 

simulation (stability, 

response)

Step 4:

Tune on track.
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 This work is very well designed. The reviewer suggested the research project moves further; 

however, it would be helpful to fine-tune the approach tailored towards certain end-users. 

Currently, it is not clear what specific use cases this project can address. Although, that is 

understandable because the project is still in its early stages.

 A model of aerodynamics based on test data is expected based on the track test results and a 

deeper analysis of fuel/energy consumption differences for hybrid-EV and EV is expected.

 The proposed research work is planned in a logical manner. The reviewer suggested the 

migration of risks in vehicle override in different vehicles and vehicle platooning track test 

should be planned.

RESPONSES TO REVIEWER COMMENTS: FY2019 

FY2019 Project Review Results

Response: A model of aerodynamics based on test data was developed in FY19, and 

later integrated for use in the VIL environment. HEV/EV energy consumption differences 

are being explored as new powertrains and functionalities are enabled.

Response: Safe, accurate testing is a critical portion of this project. A thorough safety 

plan has been developed and reviewed by all levels of ANL management for on-road and 

on-track testing, and is being implemented

Response: This effort has been to develop core capabilities in the testing and evaluation 

of CAV impacts. Specific research efforts focusing on a specific use case will be funded 

separately to ensure progress on concept development.
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DOE National Laboratory Partners:

Outside Partners / Collaborators:

• Ecocar Mobility Challenge (Development of Ecocar Chevrolet Blazer)

• ANL Modeling and Simulation (ANL RoadRunner Integration)

• DOE SMART Research Efforts

• ANL Cybersecurity Research

• US DOT- NHTSA

• Test vehicles and equipment support

• Universities 

• Wayne State University (Graduate Student Support)

• Clemson University (Data / CAN support)

• Michigan Tech (Data / CAN support)

• Publicly available vehicle data

• www.anl.gov/d3

COORDINATION: EXISTING COLLABORATIONS WITH OTHER INSTITUTIONS



REMAINING CHALLENGES AND BARRIERS FOR THIS PROJECT
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Vehicle-In-the-Loop

Aero

 Numerous staff required, DAQ system is being automated for more efficient data capture

 Inexpensive gap sensor not as reliable as radar, using radar for next track testing runs

 Coupling CFD with track testing to develop generic empirical road load reduction model

 Development of unique testing methods for implemented research platforms
No standard method for energy use evaluation of CAV technologies

 Implementing additional vehicles requires implementing “hooks” unique to each vehicle.  

These hooks are non-standard, and are often a research project in themselves.

 Ensuring speed and reliability of communication across multiple laboratories and between 

Microsimulation and Real-Time environment.

 Consistent Realistic representation of vehicle loading requires real-world testing, data 

collection, and analysis for quantification and model development



PROPOSED FUTURE WORK FOR THIS PROJECT

Note- Any proposed future work is subject to change based on funding levels

 Extension of vehicle-centric Vehicle-in-the-Loop testing environment

– Collaborative dynamometer test facilities

– Expansion of vehicle connectivity into simulated environment

– Driver-in-the-Loop

 Expansion of research vehicle fleet to enable additional research powertrains

– Variation in both manufacturer and powertrain architecture (conv / HEV / EV) 

– Expansion of vehicle control overrides (SOC, gear,…)

Vehicle-In-the-Loop

 Expanded test set varying speeds, gaps and surrounding vehicle configuration

Work with an OEM doing CFD modeling to augment testing, reduce test cases, fill gaps

 Develop a generic, empirical model used by modelers to account for surrounding vehicle gaps

Aero
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SUMMARY

 Innovative methods of experimentation are required to accurately quantify the impact of future 

automotive technologies on Mobility, Energy, and Productivity.
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Relevance

 Development of a vehicle-centric testing environment for model validation and direct research 

into Connected and Automated Vehicle (CAV) technologies.

Quantification of road-load impact of vehicle platooning through direct measurement.

Approach

 VIL- Continued development of core capabilities and validation of methodology through 

comparative dyno to track testing

 VIL- Exploration analysis of energy use impacts of driver models and vehicle positioning

 Aero – Execution of multi-vehicle aero study

Highlighted Accomplishments



TECHNICAL BACK-UP SLIDES



• Special instrumentation
 High precision power analyzers 

(testing and charging)
 CAN decoding and recording
 OCR scan tool recording
 Direct Fuel Flow metering
 Infra Red Temperature camera
 In cylinder pressure indicating 

systems
 In-situ torque sensor measurement
 5 gas emissions dilute bench with 

CVS (modal and bag emissions 
analysis)

 FTIR, Mobile Emissions unit
 Raw and Fast HC and NOx bench
 Aldehyde bench for alcohol fuels

• Test cell features
 4WD chassis dynamometer

- Variable wheel base (180inches max)

- 250 hp/axle
- 300 to 12,000 lb inertia emulation

 Radiant sun energy emulation 
850W/m2 (adjustable)

 Variable  speed cooling fan (0–62mph)

 Gaseous fuel and hydrogen capable
 Diesel: Dilution tunnel, PM, HFID

• Thermal chamber
 EPA 5 cycle capable 

(20
o
F,  72

o
F and  95

o
F + 850W/m2 solar load)

 Demonstrated as low as 0oF
 Intermediate temperatures possible

ADVANCE MOBILITY TECHNOLOGY LABORATORY

4WD CHASSIS DYNAMOMETER THERMAL TEST CELL

ver. Jan2012

• Research aspects 
 Modular and custom DAQ with real 

time data display
 Process water available for cooling  

of experiment components
 Available power in test cell

- 480VAC @ 200A
- 208VAC @ 100A

 ABC 170 Power supply capable to 
emulate electric vehicle battery

 Custom Robot Driver  with adaptive 
learning

 Several vehicle tie downs 
- chains, low profile, rigid,…
- 2, 3 and 4 wheel vehicle capable

 Expertise in testing hybrid and plug-
in hybrid electric vehicles, battery 
electric vehicles and alternative fuel 
vehicles

19



• Research aspects 
 Modular and custom DAQ with real 

time data display
 Flexible to adopt any drive cycle
 Available power in test cell

- 480VAC @ 200A & 100A
- 208VAC @ 50A, 30A & 20A x3

 ABC 170 power supply capable to 
emulate electric vehicle battery

 Custom Robot Driver  with adaptive 
learning

 Expertise in testing hybrid and plug-in 
hybrid electric vehicles, battery 
electric vehicles and alternative fuel 
vehicles

• Special instrumentation
 High precision power analyzers 

(testing and charging)
 CAN decoding and recording
 OCR scan tool recording
 Direct Fuel Flow metering
 Infra Red Temperature camera
 In cylinder pressure indicating 

systems
 In-situ torque sensor measurement
 SEMTECH-DS (Mobile Emissions 

unit) with AVL DVE mass flow sensor

ADVANCED MOBILITY TECHNOLOGY LABORATORY

2WD CHASSIS DYNAMOMETER

• Test cell features
 2WD Light Duty / Medium Duty 

chassis dynamometer 
- 300 hp
- 300 to 14,000 lb inertia emulation 
- 10,000 lb max weight  driven axle

 Multiple cooling fans available
 Vehicle lift (max 10,000 lb) 
 Remotely located control room 

with conference area

ver. Jan2012

20


